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Abstract We develop algorithmic innovations for the dual decomposition
method to address two-stage stochastic programs with mixed-integer recourse
and provide a parallel software implementation that we call DSP. Our inno-
vations include the derivation of valid inequalities that tighten Lagrangian
subproblems and that allow the guaranteed recovery of feasible solutions for
problems without (relative) complete recourse. We propose an interior-point
cutting-plane method to solve the Lagrangian master problem, and we pro-
vide termination criteria that guarantee finite termination of the algorithm.
DSP can solve instances specified in C code, SMPS files, and StochJump (a
Julia-based and parallel algebraic modeling language). DSP also implements
a standard Benders decomposition method and a dual decomposition method
based on subgradient dual updates that we use to perform benchmarks. We
present numerical results using standard SIPLIB instances and a large-scale
unit commitment problem to demonstrate that the innovations provide signif-
icant improvements in the number of iterations and solution times.
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1 Problem Statement

We are interested in computing solutions for two-stage stochastic mixed-integer
programs (SMIPs) of the form

z := min
x

{
cTx+Q(x) : Ax = b, x ∈ X

}
, (1)

where Q(x) = EξQ(x, ξ) is the recourse function and

Q(x, ξ) := min
y
{q(ξ)T y : W (ξ)y = h(ξ)− T (ξ)x, y ∈ Y }. (2)

We assume that the random parameter ξ follows a discrete distribution with
finite support {ξ1, . . . , ξS} and corresponding probabilities p1, . . . , pS (contin-
uous distributions can be handled by using a sample-average approximation).
The sets X ⊆ Rn1

+ and Y ⊆ Rn2
+ represent integer restrictions on a subset

of the decision variables x and y, respectively. The first-stage problem data
comprises A ∈ Rm1×n1 , b ∈ Rm1 , and c ∈ Rn1 . The second-stage data are
given by T (ξs) ∈ Rm2×n1 , W (ξs) ∈ Rm2×n2 , h(ξs) ∈ Rm2 , and q(ξs) ∈ Rn2 .
For simplicity, we use the notation (Ts,Ws, hs, qs) for s ∈ S := {1, . . . , S}.

The SMIP (1) can be rewritten in the extensive form

z = min
xs,ys

∑
s∈S

ps
(
cTxs + qTs ys

)
(3a)

s.t.
∑
s∈S

Hsxs = 0 (3b)

(xs, ys) ∈ Gs, ∀s ∈ S (3c)

where the scenario feasibility set is defined as

Gs := {(xs, ys) : Axs = b, Tsxs +Wsys = hs, xs ∈ X, ys ∈ Y }, (4)

(3b) are the nonanticipativity constraints representing the equations x1 = xS
and xs = xs−1 for s = 2, . . . , S, and Hs is a suitable S · n1 × n1 matrix. We
assume that the SMIP does not have relatively complete recourse. Without
this property, there can exist (x̂, ŷ) such that (x̂, ŷ) ∈ Gs and (x̂, ŷ) /∈ Gs′ for
s 6= s′.

Different techniques exist for solving SMIPs. Standard Benders decom-
position (also known as the L-shaped method) can be applied when integer
variables appear only in the first stage [6,28]. When integer variables appear in
the second stage, the recourse value function is nonconvex, discontinuous in the
first-stage variable; hence, other approaches are needed. These include convex-
ification of the recourse function [44,43,14,49,26] or specialized branch-and-
bound schemes [3]. These approaches, however, are limited to certain problem
classes.

Carøe and Schultz [8] proposed a dual decomposition method for SMIPs.
Dual decomposition solves a Lagrangian dual problem by dualizing (relaxing)
the nonanticipativity constraints to obtain lower bounds. Such lower bounds
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can then be used in a branch-and-bound search. In the dual decomposition
method, dual variables can be updated by using subgradient methods [2,8,41,
40,45], cutting-plane methods [33], or column-generation methods [33,35]. A
limitation of dual decomposition is that it is guaranteed to recover feasible
solutions only under the assumption of (relatively) complete recourse, which
often does not hold in practice. As a result, the method may not be able to find
a feasible solution to obtain an upper bound, and it is thus difficult to estimate
the optimality gap and stop the search. Moreover, the dual decomposition
method can be slow to converge. Thus, new strategies are needed to recover
feasible solutions.

Ahmed [2] proposed a dual decomposition method that is guaranteed to re-
cover an optimal feasible solution for two-stage stochastic programs with pure
binary first-stage variables by iteratively adding cover inequalities. This ap-
proach is computationally attractive, but it is applicable only to problems with
pure binary first stages. Tarhan and Grossmann [45] applied mixed-integer
programming sensitivity analysis [10] to the dual decomposition method to
improve bounds during the solution. This approach was shown to reduce the
number of iterations. Gathering and storing data from the branch-and-bound
tree to perform sensitivity analysis, however, is challenging in large-scale prob-
lems.

Progressive hedging is a popular method for solving SMIPs and can han-
dle problems with mixed-integer recourse [9,31,46,21]. However, the method
has no convergence guarantees. Consequently, it is often used as a heuristic to
find approximate solutions. We also note that this method is not guaranteed
to find a feasible approximate solution for problems that do not have rela-
tively complete recourse. Connections between progressive hedging and dual
decomposition have also been established recently to create hybrid strategies
[21].

Few software packages are currently available for solving stochastic pro-
grams. SMI [27] is an open-source software implementation that can read SMPS
files and solve the extensive form of the problem by using COIN-OR solvers
such as Cbc [12]. FortSP is a commercial solver that implements variants of
Benders decomposition [39,50]. The C package ddsip [36] implements the dual
decomposition of SMIPs and uses only the ConicBundle [23] package for up-
dating dual variables, which was unable to solve many of small-size SIPLIB
test problem instances [33]. Moreover, ddsip allows neither SMPS file input
nor modeling interface. PIPS provides a parallel interior-point method for solv-
ing continuous stochastic programs and provides a basic implementation of the
dual decomposition method for solving SMIPs [34,33]. PySP is a Python-based
open-source software package that can model and solve SMIPs in parallel com-
puting environments by using progressive hedging and Benders decomposition
[47].

In this work, we present algorithmic innovations for the dual decomposi-
tion method. We develop a procedure to generate valid inequalities that tighten
the Lagrangian subproblems and that exclude infeasible first-stage solutions.
This procedure enables us to obtain upper bounds in a general mixed-integer



4 Kibaek Kim, Victor M. Zavala

recourse setting. This procedure also accelerates solutions by sharing valid
inequalities between scenario subproblems. We also present an interior-point
cutting-plane method for solving the Lagrangian master problem and provide
termination criteria that guarantee finite convergence of the dual decompo-
sition algorithm. We introduce DSP, an open-source, object-oriented, parallel
software package that enables the implementation of different dual decomposi-
tion strategies and other standard techniques such as Benders decomposition.
DSP provides interfaces to express models using C code and using the SMPS
format [5,15]. Moreover, we can express models in StochJuMP [24] (an exten-
sion of the Julia-based algebraic modeling language package JuMP [32]) that
can be used to compactly represent large-scale stochastic programs. We bench-
mark DSP using SIPLIB instances and large-scale unit commitment problems
with up to 1,700,000 rows, 583,200 columns, and 28,512 integer variables on
a 310-node parallel computing cluster at Argonne National Laboratory. We
demonstrate that our innovations yield important improvements in robustness
and solution time.

The paper is structured as follows. In Section 2 we present the standard
dual decomposition method and discuss different approaches for updating dual
variables. In Section 3 we present our algorithmic innovations. Here, we first
present valid inequalities for the Lagrangian subproblems to eliminate infeasi-
ble first-stage solutions and to tighten the subproblems (Section 3.1). We then
present an interior-point cutting-plane method and termination criteria for
the master problem (Section 3.2). In Section 4 we describe the design of DSP
and the modeling interfaces. In Section 5 we present our benchmark results.
In Section 6 we summarize our innovations and briefly discuss future works.

2 Dual Decomposition

We describe a standard dual decomposition method for two-stage SMIPs. Let
λ ∈ RS·n1 be the dual variables of the nonanticipativity constraints (3b). We
apply a Lagrangian relaxation of these constraints to obtain the Lagrangian
dual function of (3):

D(λ) := min
xs,ys

{∑
s∈S

Ls(xs, ys, λ) : (xs, ys) ∈ Gs, ∀s ∈ S

}
, (5)

where

Ls(xs, ys, λ) := ps
(
cTxs + qTs ys

)
+ λT (Hsxs). (6)

For fixed λ, the Lagrangian dual function can be decomposed as

D(λ) =
∑
s∈S

Ds(λ), (7)
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where

Ds(λ) := min
xs,ys

{Ls(xs, ys, λ) : (xs, ys) ∈ Gs} . (8)

We thus seek to obtain the best lower bound for (3) by solving the maxi-
mization problem

zLD := max
λ

∑
sS

Ds(λ). (9)

Proposition 1 shows the tightness of the lower bound zLD.

Proposition 1 The optimal value zLD of the Lagrangian dual (9) equals the
optimal value of the following linear program,

min
xs,ys

{∑
s∈S

ps
(
cTxs + qTs ys

)
:
∑
s∈S

Hsxs = 0, (xs, ys) ∈ conv(Gs), ∀s ∈ S

}
,

(10)

and zLD ≥ zLP, where zLP is the optimal value of the linear programming
relaxation of the SMIP (3).

We highlight that the solution of the maximization problem (9) provides only
a lower bound for the SMIP (albeit this one is often tight). An upper bound
zUB for the SMIP may be obtained by finding a suboptimal feasible solution.
Finding the best upper bound can be done by using a branch-and-bound pro-
cedure, but this is significantly more expensive. Consequently, computing the
actual duality gap zUB− zLB is often difficult to do rigorously. Hence, the du-
ality gap is often approximated by using the best-known suboptimal feasible
solution.

2.1 Dual-Search Methods

In a dual decomposotion method, we iteratively search for dual values λ that
maximize the Lagrangian dual function (5). We now present a conventional
subgradient method and a cutting-plane method to perform such a search.

2.1.1 Subgradient Method

Subgradient methods have been widely used in nondifferentiable optimization.
We describe a conventional method with a step-size rule described in [11]. Let
λk be the dual variable at iteration k ≥ 0, and let xks be an optimal solution
of (8) for given λk. The dual variable is updated as

λk+1 = λk − αk
∑
s∈S

Hsx
k
s , (11)
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where αk ∈ (0, 1] is the step size. This method updates the duals by using a
subgradient of D(λ) at λk, denoted by

∑
s∈S Hsx

k
s . The step size αk is given

by

αk := βk
zUB −D(λk)∥∥∥∑S

s=1Hsxks

∥∥∥2
2

, (12)

where zUB is the objective value of the best-known feasible solution to (1) up
to iteration k and βk is a user-defined positive scalar. Algorithm 1 summarizes
the procedure.

Algorithm 1 Dual Decomposition Based on Subgradient Method (DDSub)

1: Set k ← 0, zLB ← −∞, zUB ←∞ and γ ← 0.
2: loop
3: SOLVE (8) to obtain Ds(λk) and (xks , y

k
s ) for given λk and for all s ∈ S

4: if D(λk) > zLB then
5: zLB ← D(λk)
6: else
7: γ ← γ + 1
8: if γ = γmax then
9: βk ← 0.5βk and γ ← 0

10: end if
11: end if
12: UPDATE zUB for given xks
13: k ← k + 1
14: end loop

Algorithm 1 is initialized with user-defined parameters λ0, γmax, and β0
and reduces βk by a half when the best lower bound zLB is not improved
for the last γmax iterations (lines 8-10). The best upper bound zUB can be
obtained by solving (3) for fixed xks (line 12). The resulting problem may be
infeasible (if relatively complete recourse does not hold), for which we assume
the objective value is +∞. An important limitation of subgradient methods is
that it is not possible to prove finite termination [11].

2.1.2 Cutting-Plane Method

The cutting-plane method is an outer approximation scheme that solves the
Lagrangian dual problem by iteratively adding linear inequalities. The outer
approximation of (9) at iteration k is given by the Lagrangian master problem:

mk := max
θs,λ

∑
s∈S

θs (13a)

s.t. θs ≤ Ds(λ
l) +

(
Hsx

l
s

)T
(λ− λl), s ∈ S, l = 0, 1, . . . , k. (13b)
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The dual variable λk+1 is obtained by solving the approximation (13) at itera-
tion k. We define the primal-dual solution of the Lagrangian master problem as
the triplet (θ, λ, π). Here, θ := (θ1, ..., θS) and π := (π0

1 , ..., π
k
1 , ..., π

0
S , ..., π

k
S),

where πls are the dual variables of (13b). The procedure is summarized in
Algorithm 2.

Algorithm 2 Dual Decomposition Based on Cutting-Plane Method (DDCP)

1: k ← 0 and λ0 ← 0
2: SOLVE (8) to obtain Ds(λk) and (xks , y

k
s ) for given λk and for all s ∈ S

3: zLB ← D(λk).
4: repeat
5: ADD (13b) for given D(λk) and xks
6: SOLVE (13) to obtain mk and (θk+1, λk+1)

7: SOLVE (8) to obtain Ds(λk+1) and (xk+1
s , yk+1

s ) for given λk+1 and for all s ∈ S
8: zLB ← max{zLB, D(λk+1)}.
9: k ← k + 1

10: until mk−1 ≤ D(λk)

The function Ds(λ) is piecewise linear concave in λ supported by the linear
inequalities (13b). Assuming that the master problem (13) and the subprob-
lem (8) can be solved to optimality, Algorithm 2 terminates with an optimal
solution of (9) after a finite number of steps because the number of linear in-
equalities required to approximate D(λ) is finite. This gives the cutting-place
method a natural termination criterion (i.e., mk−1 ≤ D(λk)).

Remark 1 Instead of adding the linear inequalities (13b) for each s ∈ S, one
can add a single aggregated cut

∑
s∈S

θs ≤
∑
s∈S

Ds(λ
l) +

(∑
s∈S

Hsx
l
s

)T
(λ− λl) (14)

per iteration l = 0, 1, . . . , k. While the convergence will slow, the master prob-
lem can maintain a smaller number of constraints.

Remark 2 The column generation method [33,35] is a variant of the cutting-
plane method that solves the dual of the Lagrangian master problem (13).
Lubin et al. [33] demonstrated that the dual of the Lagrangian master has a
dual angular structure that can be exploited.

3 Algorithmic Innovations for Dual Decomposition

We now develop innovations for the dual decomposition method based on cut-
ting planes. In Section 3.1 we present an approach to construct valid inequali-
ties that eliminate infeasible first-stage solutions and tighten the subproblems.
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As a byproduct, the method can effectively obtain upper bounds for the orig-
inal problem (3). In Section 3.2 we present an interior-point method and ter-
mination criteria to stabilize the solutions of the Lagrangian master problem
(13).

3.1 Tightening Inequalities for Subproblems

We consider two cases in which a set of valid inequalities that can be generated
to exclude a subset of (suboptimal) solutions for the subproblems. In the first
case we consider a feasible subproblem solution that is infeasible with respect
to the original problem. Let (x̂, ŷ) ∈ Gs for some s ∈ S.

Proposition 2 Assume that there exists an s′ 6= s such that (x̂, y) /∈ Gs′ for
fixed x̂. Let µs′ be an optimal solution of the problem

max
µ

{
µT (hs′ − Ts′ x̂) : µTWs′ ≤ 0, |µ| ≤ 1

}
, (15)

where the absolute value | · | is taken componentwise. The inequality

µTs′ (hs′ − Ts′x) ≤ 0 (16)

excludes x̂ from the set {x : (x, y) ∈ Gs′} and is also valid for SMIP (3).

Proof By assumption, there exists some scenario s′ 6= s such that (x̂, y) /∈ Gs′
for all y ∈ Rn2 . Hence, from Farkas’ lemma, there exists a µs′ ∈ Rm2 such that
µTs′Ws′ ≤ 0 and µTs′(hs′ − Ts′ x̂) > 0, and thus hyperplane µTs′ (hs′ − Ts′x) ≤ 0
separates x̂ from {x : (x, y) ∈ Gs′}. Moreover, this is valid for Gs and thus for
the original problem (3). ut

The situation in Proposition 2 can occur when SMIP does not have com-
plete recourse. Because inequality (16) is analogous to the feasibility cut of the
L-shaped method [6], we call it a feasibility cut. We thus acknowledge that
infeasibility would not be eliminated unless it is detected at the root node of
the branch-and-bound tree for solving the subproblem (8).

In the second case we consider a feasible subproblem solution that is also
feasible with respect to the original problem. We also present a set of valid
inequalities that can further tighten the subproblems by using an upper bound
zUB of the original problem.

Proposition 3 Assume that there exists y ∈ Rn2 such that (x̂, y) ∈ Gs′ for all
s′ ∈ S and for fixed x̂. Let πs be the optimal solution of the following recourse
problem for each s ∈ S:

max
π

{
πT (hs − Tsx̂) : πTWs ≤ qs

}
. (17)

The inequality

cTx+
∑
s∈S

πTs (hs − Tsx) ≤ zUB (18)

is valid for SMIP (3).
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Proof Consider Benders-like decomposition of the original problem with re-
laxation of second-stage integrality,

min
x

cTx+
∑
s∈S

psq
T
s ŷs(x)

s.t. Ax = b, x ∈ X,

where ŷs(x) := argminy{qTs y : Wsy = hs − Tsx, y ≥ 0}. This is equivalent to

min
x

cTx+
∑
s∈S

psπ̂s(x)T (hs − Tsx)

s.t. Ax = b, x ∈ X,

where π̂s(x) := argmaxπ{πT (hs − Tsx) : πTWs ≤ qs}. By assumption, there
exists a solution πs for (17) for each s = 1, . . . , S. Because

cTx+
∑
s∈S

πTs (hs − Tsx) ≤ cTx+
∑
s∈S

pTs π̂s(x)T (hs − Tsx) ≤ zUB

holds for any feasible x, the inequality (18) is valid for G. ut

Inequality (18) is a supporting hyperplane that lower approximates the
objective function of SMIP (3). Moreover, the inequality is parameterized by
the upper bound zUB and thus can be tightened as better upper bounds are
obtained. We call inequality (18) an optimality cut, because it is analogous to
the optimality cut of the L-shaped method [6]. Procedure 1 summarizes the
proposed cutting-plane procedure for solving the Lagrangian subproblems (8)
by adding the valid inequalities (16) and (18). This procedure replaces lines 2
and 7 of the standard dual decomposition method of Algorithm 2.

Procedure 1 Cutting-Plane Procedure for Lagrangian Subproblems

Require: λk

1: for all s ∈ S do
2: repeat
3: SOLVE subproblem (8) to obtain Ds(λk) and (xks , y

k
s ) for λk

4: isFeasible← true
5: for all s′ ∈ S\{s} do
6: SOLVE feasibility cut generator (15) to obtain µs′ for xks
7: if µT

s′ (hs′ − Ts′x
k
s ) > 0 then

8: ADD feasibility cut (16) to all the subproblems (8)
9: isFeasible← false

10: end if
11: end for
12: until isFeasible = true
13: UPDATE zUB by solving (3) for fixed xks
14: GENERATE optimality cut (18) by solving (17) for xks and for all s ∈ S
15: ADD optimality cut (18) to all the subproblems (8)
16: end for
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The inequalities (16) and (18) generated in lines 6 and 14, respectively,
are added to all the subproblems (lines 8 and 14). Hence, the inequalities
generated for one scenario are shared with all the other scenarios. Theorem 1
shows that Procedure 1 terminates in a finite number of steps.

Theorem 1 Procedure 1 terminates in a finite number of steps.

Proof We need to show that only a finite number of feasibility cuts (16) are
generated and this holds because there exists a finite number of bases in each
one of the cut generation problem (15). Note that (15) is a linear program,
where the objective function is parameterized by x̂, and the corresponding
bases do not change in x̂. Consequently, only a finite number of cuts can
be generated in the loop of lines 2-12 before finding a feasible solution (i.e.,
isFeasible = true in line 12). ut

3.2 Interior-Point Cutting-Plane Method for the Lagrangian Master Problem

From a computational standpoint, the simplex method is an efficient algo-
rithm for solving the Lagrangian master problems. This efficiency is mostly
because of its warm-starting capabilities (e.g., [7]). The solutions of the La-
grangian master problem, however, oscillate significantly when the epigraph
of the Lagrangian dual function is not well approximated because many near-
optimal solutions of the master problem are present [17,38]. This oscillation
can make the dual decomposition method numerically unstable and slow con-
vergence (we illustrate this behavior in Figure 5 of Section 5). To avoid this
situation, we solve the Lagrangian master problems suboptimally using an
interior-point method (IPM). As noted in [38], early termination can enable
us to find stronger cuts and to avoid degeneracy.

IPM with early termination has been applied in the context of cutting-plane
and column-generation methods [17,38,20,19]. We propose a new termination
criterion specific to the dual decomposition context that uses upper-bound
information to determine whether the IPM should be terminated.

The IPM checks the termination criteria in the following order:∑
s∈S

θks ≥ zUB, (19a)

gk(θk, πk) < εkIPM. (19b)

Here, we define the relative duality gap of the primal-dual feasible solution
(θ, λ, π) of the master (13) at iteration k as

gk(θ, π) :=

∑
s∈S

k∑
l=1

πls
(
Ds(λ

l)− (Hsx
l
s)
Tλl
)
−
∑
s∈S

θs

1 +

∣∣∣∣∣∑
s∈S

θs

∣∣∣∣∣
. (20)
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We denote (θ̃k, λ̃k, π̃k) as a primal-dual feasible solution of the master (13)
obtained at iteration k such that gk(θ̃k, π̃k) < εkIPM for some duality gap

tolerance εkIPM > 0 or
∑
s∈S θ̃

k
s ≥ zUB for the current upper bound zUB <∞.

We adjust the tolerance εkIPM at each iteration of the dual decomposition
procedure. The tolerance εkIPM can be made loose when the duality gap of the
dual decomposition method is large and it is updated as follows:

εkIPM := min

εmaxIPM ,
gk−1(θ̃k−1, π̃k−1)

δ
+

m̃k−1 −
∑
s∈S

Ds(λ̃
k−1)

1 + |m̃k−1|

 , (21)

where m̃k−1 :=
∑
s∈S θ̃

k−1
s and δ > 1 is the degree of optimality [19].

At first sight it seems possible that Algorithm 2 may not generate any cut
because the solution of the master is terminated early. Propositions 4 and 5
show, however, that Algorithm 2 does not stall and eventually generates cuts
or terminates with optimality.

Proposition 4 Let (θ̃k, λ̃k, π̃k) be a feasible suboptimal solution of the master
(13) satisfying gk(θ̃k, π̃k) < εkIPM at iteration k with εkIPM defined in (21). If

θ̃ks ≤ Ds(λ̃
k) for all s ∈ S, then εk+1

IPM ≤ gk(θ̃k, π̃k) < εkIPM.

Proof Suppose that

εk+1
IPM =

gk(θ̃k, π̃k)

δ
+
m̃k −

∑
s∈S Ds(λ̃

k)

1 + |m̃k|
< εmaxIPM .

Because θ̃ks ≤ Ds(λ̃
k) holds for all s ∈ S, we have m̃k

s −
∑
s∈S Ds(λ̃

k) =∑
s∈S

(
θ̃ks −Ds(λ̃

k)
)
≤ 0 and εk+1

IPM ≤ gk(θ̃k, π̃k)/δ < gk(θ̃k, π̃k) < εkIPM. ut

Proposition 4 implies that the feasible solution at iteration k should not
be the same as that at iteration k+ 1 with the new tolerance εk+1

IPM (even if no
cut was generated at iteration k). In fact, the next iteration finds a feasible
solution that, if not optimal, is at least closer to an optimum.

We are interested only in feasible solutions satisfying
∑
s∈S θ̃s < zUB for

a given zUB < ∞. Consequently, the IPM can be terminated with a feasible
solution (θ̃, λ̃, π̃) whenever

∑
s∈S θ̃s ≥ zUB .

Proposition 5 Let (θ̃k, λ̃k, π̃k) be a feasible solution of the master (13) sat-
isfying

∑
s∈S θ̃

k
s ≥ zUB at iteration k for a given zUB < ∞. If θ̃ks ≤ Ds(λ̃

k)

for all s ∈ S, then
∑
s∈S Ds(λ̃

k) = zUB.

Proof Because θ̃ks ≤ Ds(λ̃
k) holds for all s ∈ S, we have zUB ≤

∑
s∈S θ̃

k
s ≤∑

s∈S Ds(λ̃
k) ≤ zLD. Because zLD ≤ zUB, we have zLD =

∑
s∈S Ds(λ̃

k) = zUB.
ut
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λ

D
s(
λ) zUB

εIPM
k

(a) Terminated by criterion
(19a)

λ

D
s(
λ)

zUB
εIPM
k

(b) Terminated by criterion
(19b), but no cut generation

λ

D
s(
λ)

zUB

εIPM
k

(c) Terminated by criterion
(19b) with decreased εkIPM

Fig. 1: Illustration of different termination cases of the IPM with the proposed
criteria

Proposition 5 states that a feasible master solution (θ̃k, λ̃k, π̃k) satisfying∑
s∈S θ̃

k
s ≥ zUB at iteration k is optimal if no cut is generated for such a

solution. The following corollary also suggests that at least a cut is generated
for the feasible solution if

∑
s∈S θ̃

k
s > zUB.

Corollary 1 Let (θ̃k, λ̃k, π̃k) be a feasible solution of the master (13) satisfy-
ing

∑
s∈S θ̃

k
s > zUB at iteration k for given εkIPM and zUB. There exists some

s ∈ S such that θ̃ks > Ds(λ̃
k). ut

Figure 1 illustrates different termination cases for the IPM under the pro-
posed criteria (19). Figure 1a shows the IPM terminated by criterion (19a)
prior to satisfying condition (19b). In Figure 1b, the IPM terminated by crite-
rion (19b), but no cut was generated at the solution. Hence, from Proposition 4,
we decrease the tolerance εkIPM by the rule (21). The IPM terminated with the
decreased tolerance at the next iteration in Figure 1c.

We modify the dual decomposition method of Algorithm 2 in order to
use the interior-point cutting-plane method with the proposed termination
criteria (19) for the master problems (13). Moreover, we solve the Lagrangian
subproblems (8) by using Procedure 1. We denote the duality gap tolerance
for optimality to the IPM by εOpt; that is, (θk, πk) is an optimal solution for
the master (13) at iteration k if gk(θk, πk) < εOpt.

Theorem 2 Algorithm 3 terminates after a finite number of iterations.

Proof We consider the following cases:

– Assume that a feasible solution is found that satisfies
∑
s∈S θ̃

k+1
s ≥ zUB

for given zUB <∞.
– If θ̃ks ≤ Ds(λ̃

k) holds for all s ∈ S, we have from Proposition 5 that the
algorithm terminates with optimality (line 10).

– Otherwise, from Corollary 1, we must have that the algorithm excludes
the current solution by adding cutting-planes (13b) (line 12).

– Assume that a feasible solution is found that satisfies gk(θ̃k, λ̃k) < εkIPM.

– If θ̃ks ≤ Ds(λ̃
k) holds for all s ∈ S, we have from Proposition 4 that the

algorithm reduces εkIPM by a factor of δ (line 17). An optimal master



Innovations and Software for SMIP 13

Algorithm 3 Dual Decomposition Based on Interior-Point Cutting-Plane
Method (DSP)

1: k ← 0, λ0 ← 0 and zUB ←∞
2: CALL Procedure 1 to obtain Ds(λk) and (xks , y

k
s ) for given λk

3: ADD cutting-planes (13b) to the master (13) for given D(λk) and xks
4: zLB ← D(λk).
5: loop
6: SOLVE the master (13) by the IPM to obtain (θk+1, λk+1)

7: CALL Procedure 1 to obtain Ds(λk+1) and (xk+1
s , yk+1

s ) for given λk+1

8: if (θk+1, λk+1) is obtained from (19a) then

9: if θk+1
s ≤ Ds(λk+1) for all s ∈ S then

10: STOP
11: else
12: ADD cutting-planes (13b) to the master (13) for given D(λk+1) and xk+1

s

13: end if
14: else if (θk+1, λk+1) is obtained from (19b) then

15: if θk+1
s ≤ Ds(λk+1) for all s ∈ S then

16: if εkIPM > εOpt then

17: UPDATE εk+1
IPM from (21)

18: else
19: STOP
20: end if
21: else
22: ADD cutting-planes (13b) to the master (13) for given D(λk+1) and xk+1

s

23: end if
24: end if
25: zLB ← max{zLB, D(λk)}.
26: k ← k + 1
27: end loop

solution can thus be obtained after a finite number of reductions in
εkIPM. (line 19)

– Otherwise, the algorithm excludes the current solution by adding (13b)
(line 22).

Each case shows either a finite termination or the addition of cuts (13b).
Because a finite number of inequalities are available for (13b) and because
Procedure 1 also terminates in a finite number of steps from Theorem 1, the
algorithm terminates after a finite number of steps. ut

4 DSP: An Open-Source Package for SMIP

We now introduce DSP, an open-source software package that provides serial
and parallel implementations of different decomposition methods for solving
SMIPs. DSP implements the dual decomposition method of Algorithm 3 as well
as standard dual decomposition methods (Algorithms 1 and 2) and a standard
Benders decomposition method. We describe software implementation details
and different avenues for the user to call the solver.
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4.1 Software Design

The software design is object-oriented and implemented in C++. It consists of
Model classes and Solver classes for handling optimization models and scenario
data.

4.1.1 Model Classes

An abstract Model class is designed to define a generic optimization model data
structure. The StoModel class defines the data structure for generic stochastic
programs, including two-stage stochastic programs and multistage stochastic
programs. The underlying data structure of StoModel partially follows the
SMPS format. The class also defines core functions for problem decomposition.
The TssModel class derived defines the member variables and functions specific
to two-stage stochastic programs and decompositions. Following the design of
the model classes, users are able to derive new classes for their own purposes
and efficiently manage model structure provided from several interfaces (e.g.,
StochJuMP and SMPS; see Section 4.2).

4.1.2 Solver Classes

An abstract Solver class is designed to provide different algorithms for solving
stochastic programming problems defined in the Model class. DSP implements
the TssSolver class to define solvers specific to two-stage stochastic programs.
From the TssSolver class, three classes are derived for each method: TssDe,
TssBd, and TssDd.

The TssDe class implements a wrapper of external solvers to solve the
extensive form of two-stage stochastic programs. The extensive form is con-
structed and provided by the TssModel class.

The TssBd class implements a Benders decomposition method for solving
two-stage stochastic programs with continuous recourse. A proper decompo-
sition of the model is performed and provided by the TssModel class, while
the second-stage integrality restriction is automatically relaxed. Depending on
parameters provided, TssModel can make a different form of the problem de-
composition for TssBd. For example, the user can specify the number of cuts
added per iteration, which determines the number of auxiliary variables in the
master problem of Benders decomposition. Moreover, the Benders master can
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be augmented for a subset S̃ of scenarios as follows:

min cTx+
∑
s∈S̃

psq
T
s ys + θ

s.t. Ax = b,

Tsx+Wsys = hs, ∀s ∈ S̃,

x ∈ X, ys ∈ Y, ∀s ∈ S̃,

θ ≥
∑
s∈S\S̃

psQ(x, ωs),

where S̃ is given be user.
The TssDd class implements the proposed dual decomposition method for

solving two-stage stochastic programs with mixed-integer recourse. For this
method, an abstract TssDdMaster class is designed to implement methods for
updating the dual variables. The subgradient method in Algorithm 1 and the
cutting-plane method in Algorithm 2 are implemented in such derived classes.
Moreover, a subclass derived from the TssBd is reused for implementing the
cutting-plane procedure from Procedure 1. An l∞-norm trust region is also
applied to Algorithm 2 in order to stabilize the cutting-plane method. The
rule of updating the trust region follows that proposed in [30]. Users can also
implement their own method for updating the dual variables.

4.1.3 External Solver Interface Classes

DSP uses external MIP solvers to solve subproblems under different decomposi-
tion methods. The SolverInterface class is an abstract class to create interfaces
to the decomposition methods implemented. Several classes are derived from
the abstract class in order to support specific external solvers. The current im-
plementation supports three LP solvers (Clp [13], SoPlex [48], and OOQP [16])
and a mixed-integer solver (SCIP [1]). Users familiar with the COIN-OR Open
Solver Interface [42] should easily be able to use the SolverInterfaceOsi class
to derive classes for other solvers (e.g., CPLEX [25], Gurobi [22]).

4.1.4 Parallelization

The proposed dual decomposition method can be run on distributed memory
and on shared memory computing systems with multiple cores. The imple-
mentation protocol is MPI. In a distributed memory environment, the sce-
nario data and corresponding Lagrangian subproblems are distributed to mul-
tiple processors based on scenario indices. The root processor updates the
Lagrangian multipliers and solves a subset of the subproblems. The users can
also compile the code with the flag -DUSE ROOT PROCESSOR=0 in order to re-
quire the root processor to update only the dual variables. When solving the
subproblems in distributed computing nodes, subproblem solutions and the
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dual variables must be communicated with the root processor. In addition,
each computing node communicates the primal first-stage solutions and the
valid inequalities generated for a subproblem with the rest of the nodes.

4.2 Interfaces for C, StochJuMP, and SMPS

The source code of DSP is compiled to a shared object library with C API
functions defined in StoCInterface.h. Users can load the shared object library
with the implementation of the model to call the API functions. We also
provide interfaces to StochJuMP and SMPS files.

StochJuMP is a scalable algebraic modeling package for stochastic program-
ming problems based on the mathematical programming modeling package
JuMP [4,32,24]. StochJuMP enables the generation of large-scale problems in
parallel environments and thus overcomes memory and timing bottlenecks.
Moreover, it exploits the algebraic modeling capabilities of JuMP to specify
problems in a concise format and Julia programming language, which enables
the easy handling of data and the use of other tools (e.g., statistical analysis
and plotting tools). To illustrate these capabilities, we present a StochJuMP im-
plementation of the two-stage stochastic integer program with integer recourse
presented in [8].

min

{
−1.5x1 − 4x2 +

3∑
s=1

psQ(x1, x2, ξ
s
1, ξ

s
2) : x1, x2 ∈ {0, . . . , 5}

}
,

where

Q(x1, x2, ξ
s
1, ξ

s
2) = min

y1,y2,y3,y4
− 16y1 + 19y2 + 23y3 + 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ξs1 − x1
6y1 + y2 + 3y3 + 2y4 ≤ ξs2 − x2
y1, y2, y3, y4 ∈ {0, 1}

and (ξs1, ξ
s
2) ∈ {(7, 7), (11, 11), (13, 13)} with probability 1/3. The correspond-

ing StochJuMP model reads:

1 using DSP, StochJuMP, MPI; # Load packages
2 MPI.Init(); # Initialize MPI
3 m = StochasticModel(3); # Create a Model object with three scenarios
4 xi = [[7,7] [11,11] [13,13]]; # random parameter
5 @defVar(m, 0 <= x[i=1:2] <= 5, Int);
6 @setObjective(m, Min, -1.5*x[1]-4*x[2]);
7 for s in 1:3
8 q = StochasticBlock(m, 1/3);
9 @defVal(q, y[j=1:4], Bin);
10 @setObjective(q, Min, -16*y[1]+19*y[2]+23*y[3]+28*y[4]);
11 @addConstraint(q, 2*y[1]+3*y[2]+4*y[3]+5*y[4]<=xi[1,s]-x[1]);
12 @addConstraint(q, 6*y[1]+1*y[2]+3*y[3]+2*y[4]<=xi[2,s]-x[2]);
13 end
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14 DSP.loadProblem(m); # Load model m to DSP
15 DSP.solve(DSP_SOLVER_DD); # Solve problem using dual decomposition
16 MPI.Finalize(); # Finalize MPI

In the first line of this script we include DSP, StochJuMP and MPI packages.
The StochJuMP model is given in lines 3 to 13. The first-stage is defined in
lines 5 and 6 and the second stage in lines 8 to 12 for each scenario. DSP reads
and solves the model in lines 14 and 15, respectively. Note that only two lines
of code (14 and 15) are required to invoke the parallel decomposition method.

In the script provided we solve the problem using the dual decomposition
method described in Section 3 (line 15). Alternatively, users can use Benders
decomposition by replacing line 15 with

1 DSP.solve(DSP_SOLVER_BD);

or directly solve the extensive form by replacing line 15 with

1 DSP.solve(DSP_SOLVER_DE);

DSP can also read a model provided in SMPS files [5]. In this format, a
model is defined by three files: core, time, and stochastic with file extensions
of .cor, .tim, and .sto, respectively. The core file defines the deterministic
version of the model with a single reference scenario, the time file indicates a
row and a column that split the deterministic data and stochastic data in the
constraint matrix, and the stochastic file defines random data. The user can
load SMPS files and call DSP using the Julia interface as follows.

1 # Read SMPS files: example.cor, example.tim and example.sto
2 DSP.readSmps("example");

5 Computational Experiments

We present computational experiments to demonstrate the capabilities of DSP.
We solve publicly available test problem instances (Section 5.1) and a stochas-
tic unit commitment problem (Section 5.2). All experiments were run on Blues,
a 310-node computing cluster at Argonne National Laboratory. Blues has a
QLogic QDR InfiniBand network, and each node has two octo-core 2.6 GHz
Xeon processors and 64 GB of RAM.

5.1 Test Problem Instances

We use dcap and sslp problem instances from the SIPLIB test library avail-
able in http://www2.isye.gatech.edu/∼sahmed/siplib/. Characteristics of
the problem instances are described in Table 1. The first column of the table
lists the names of the problem instances, in which S is substituted by the num-
ber of scenarios in the second column. The other columns present the number
of rows, columns, and integer variables for each stage, respectively. Note that

http://www2.isye.gatech.edu/~sahmed/siplib/
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the dcap instances have a mixed-integer first stage and a pure-integer sec-
ond stage, whereas the sslp instances have a pure-integer first stage and a
mixed-integer second stage.

Table 1: Characteristics of the SIPLIB instances

First Stage Second Stage
Name Scenarios (S) Rows Cols Ints Rows Cols Ints
dcap233 S 200, 300, 500 6 12 6 15 27 27
dcap243 S 200, 300, 500 6 12 6 18 36 36
dcap332 S 200, 300, 500 6 12 6 12 24 24
dcap342 S 200, 300, 500 6 12 6 14 32 32
sslp 5 25 S 50, 100 1 5 5 30 130 125
sslp 10 50 S 5, 10, 15 1 10 10 60 510 500
sslp 15 45 S 50, 100 1 15 15 60 690 675

5.1.1 Benchmarking Dual-Search Strategies

We experiment with different methods for updating the dual variables: DDSub
of Algorithm 1, DDCP of Algorithm 2, and DSP of Algorithm 3. In this exper-
iment, DDSub initializes parameters β0 = 2 and γmax = 3 for the step-size rule
and terminates if one of the following conditions is satisfied: (i) the optimality
gap, (zUB − zLB)/|10−10 + zUB|, is less than 10−5; (ii) βk ≤ 10−6; and (iii)
the solution time exceeds 6 hours. DDCP solves the master problem by using
the simplex method implemented in Soplex-2.0.1 [48] by taking advantage
of warm-start information from the previous iteration. DSP solves the master
problem by using Mehrotra’s predictor-corrector algorithm [37] implemented
in OOQP-0.99.25 [16]. Each Lagrangian subproblem is solved by SCIP-3.1.1
with Soplex-2.0.1. All methods use the initial dual values λ0 = 0. This ex-
periment was run on a single node with 16 cores.

Figure 2 presents the optimality gap obtained by different dual decomposi-
tion methods for each SIPLIB instance. DDCP and DSP found optimal lower
bounds zLD for all the test problems, whereas DDSub found only suboptimal
values. DSP also found tighter upper bounds for the instances dcap233 300,
dcap233 500, dcap332 200 and dcap342 200 than DDCP (see Table 2).

Figure 3 presents the solution time and the number of iterations relative
to those from DSP for each SIPLIB instance. DSP reduced the solution time
and the number of iterations (relative to DDSub) by factors of up to 199
and 78, respectively. Relative to DDCP, the reductions in solution time and
number of iterations by factors of up to 7 and 5 achieved, respectively. DDSub
terminated earlier than DSP for instances dcap 332 x and dcap 342 x because
of the termination criterion βk < 10−6. For these instances poor-quality lower
bounds are provided. DDSub did not terminate within the time limit of 6 hours
for instance sslp 15 45 15. Detailed numerical results are given in Table 2.

Figure 4 shows the Lagrangian dual values obtained in each iteration for
sslp 15 45 15 by using DDSub, DDCP, and DSP. The lower bound is -275.7
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Table 2: Computational results for SIPLIB instances using different dual de-
composition methods.

Upper Lower Gap Wall time
Instance Scenarios Method Iter Bound Bound (%) (sec.)
dcap233 200 DDSub 2024 1835.34 1819.66 0.85 3349

DDCP 71 1835.34 1833.38 0.11 1365
DSP 36 1835.34 1833.38 0.11 901

300 DDSub 1218 1645.22 1634.25 0.67 6263
DDCP 93 1645.22 1642.73 0.15 3412
DSP 40 1645.01 1642.73 0.14 2094

500 DDSub 2135 1737.95 1730.31 0.44 19184
DDCP 115 1738.18 1736.68 0.09 9451
DSP 40 1737.95 1736.64 0.08 5390

dcap243 200 DDSub 1742 2322.51 2310.71 0.51 3489
DDCP 48 2322.51 2321.15 0.06 1241
DSP 33 2322.51 2321.19 0.06 936

300 DDSub 2995 2559.49 2549.60 0.39 7782
DDCP 56 2559.86 2556.68 0.12 2814
DSP 43 2559.86 2556.69 0.12 2186

500 DDSub 2489 2167.36 2156.76 0.49 19099
DDCP 67 2167.36 2165.47 0.09 8831
DSP 36 2167.36 2165.47 0.09 6540

dcap332 200 DDSub 126 1068.25 983.24 7.96 660
DDCP 88 1065.88 1059.09 0.64 1174
DSP 43 1063.53 1059.09 0.42 916

300 DDSub 126 1260.73 1165.90 7.52 1304
DDCP 85 1257.02 1250.91 0.49 2951
DSP 53 1257.02 1250.91 0.49 2194

500 DDSub 126 1593.52 1541.25 3.28 3637
DDCP 76 1592.22 1587.05 0.32 6732
DSP 44 1592.22 1587.07 0.32 5312

dcap342 200 DDSub 126 1621.69 1582.10 2.44 735
DDCP 79 1620.77 1618.08 0.17 1251
DSP 42 1620.19 1618.08 0.13 949

300 DDSub 126 2068.69 2020.11 2.35 1644
DDCP 81 2067.77 2065.42 0.11 2808
DSP 41 2067.77 2065.44 0.11 2203

500 DDSub 126 1906.18 1861.25 2.36 4451
DDCP 87 1905.27 1902.99 0.12 7824
DSP 42 1905.27 1902.99 0.12 5970

sslp 5 25 50 DDSub 645 -121.60 -123.76 1.77 246
DDCP 29 -121.60 -121.60 0.00 15
DSP 5 -121.60 -121.60 0.00 7

100 DDSub 995 -127.37 -128.94 1.23 648
DDCP 36 -127.37 -127.37 0.00 39
DSP 5 -127.37 -127.37 0.00 20

sslp 15 45 5 DDSub 914 -262.40 -262.42 0.01 2490
DDCP 21 -262.40 -262.40 0.00 164
DSP 5 -262.40 -262.40 0.00 32

10 DDSub 427 -260.50 -268.15 2.94 8867
DDCP 88 -260.50 -260.50 0.00 1988
DSP 17 -260.50 -260.50 0.00 515

15 DDSub 541 -253.60 -265.30 4.61 > 21600
DDCP 89 -253.60 -253.60 0.00 14917
DSP 17 -253.60 -253.60 0.00 3092

sslp 10 50 50 DDSub 774 -364.64 -369.21 1.25 3105
DDCP 62 -364.64 -364.64 0.00 410
DSP 11 -364.64 -364.64 0.00 174

100 DDSub 582 -354.19 -365.09 3.08 4676
DDCP 80 -354.19 -354.19 0.00 1143
DSP 12 -354.19 -354.19 0.00 594
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Fig. 2: Optimality gap obtained by different dual decomposition methods

at iteration k = 0. Fewer oscillations in the lower bounds and a faster solution
were obtained with DSP compared with the standard cutting-plane method
DDCP. Figure 5 presents the Euclidean distance of the dual variable values
between consecutive iterations (‖λk+1−λk‖2). The figure is truncated at itera-
tion 100. As can be seen, DSP dual updates oscillate less compared with DDCP
updates. DDSub updates seem stable, but this is because of slow progress in
the dual variables. These results highlight the benefits gained by the use of
IPM and early termination

5.1.2 Impact of Second-Stage Integrality

We now use DSP to analyze the impact of relaxing recourse integrality in Ben-
ders decomposition (this approach is often used as a heuristic). Figure 6 shows
that the optimality gap improved (i.e., the DSP optimality gap - the Benders
optimality gap). Upper bounds for Benders decomposition were calculated by
evaluating the first-stage solutions obtained from relaxation of the recourse
function.

For the dcap instances, Benders decomposition poorly approximates lower
bounds by relaxing the second-stage integrality. The largest gap was 86% ob-
tained for dcap332 500 with Benders decomposition, compared with 0.32 %
obtained with dual decomposition. Benders solutions for sslp 15 45 x and
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Fig. 3: Solution time and number of iterations relative to those of DSP.
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Fig. 5: Changes of the dual variables by different methods for SIPLIB instance
sslp 15 45 15.

sslp 10 50 x have duality gaps > 0.2%, whereas the dual decomposition solu-
tions are optimal for all problem instances.

5.2 Large-Scale Stochastic Unit Commitment

We test the dual decomposition method on a large-scale day-ahead stochastic
unit commitment model. In this model, thermal power generators are sched-
uled over a day. The schedules are subjected to uncertainty in wind power. We
use a modified IEEE 188-bus system with 54 generators, 118 buses, and 186
transmission lines provided in [29]. We assume that 17 of the 54 generators
are allowed to start on demand (second stage) whereas the other generators
should be scheduled in advance (first stage). We also consider 3 identical wind
farms each consisting of 120 wind turbines. The demand load is 3,095 MW
on average, with a peak of 3,733 MW. The wind power generation level is
494 MW on average, with a peak of 916 MW for the 64 scenarios generated.
Figure 7 shows the 64 scenarios (grey lines) of wind power generation and
the mean levels (red lines). The formulation of the two-stage stochastic unit
commitment model is provided in Appendices A and B.
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Fig. 6: Improvement in optimality gaps with DSP relative to Benders decom-
position.

Table 3: Characteristics of the stochastic unit commitment instances

Scenarios # Rows # Columns # Integers
4 120,015 38,880 2,592
8 229,303 75,168 4,320

16 447,879 147,744 7,776
32 885,031 292,896 14,688
64 1,759,335 583,200 28,512

Table 4: Numerical results for stochastic unit commitment problem under DSP.

Scenarios Iter Upper Bound Lower Bound Gap (%) Wall time (sec.)
4 1 907046.1 906979.1 < 0.01 590
8 1 904006.6 903953.5 < 0.01 785

16 1 900706.3 900650.7 < 0.01 1293
32 18 903227.7 903149.9 < 0.01 19547
64 5 895118.0 894756.5 0.04 > 21600
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Fig. 7: Wind power generation scenarios for wind farms considered in the
stochastic unit commitment model.

Table 3 presents the size of the stochastic unit commitment instances with
4, 8, 16, 32, and 64 scenarios. The first stage has 10,727 constraints and 2,592
variables including 864 integer variables, and the second stage has 27,322 con-
straints and 9,072 variables including 432 integer variables.

Table 4 presents the numerical results. Each instance uses the same num-
ber of computing cores as scenarios. We add only one aggregated cut to the
master problem in each iteration (see Remark 1). DSP found upper and lower
bounds with < 0.01% optimality gap for the 4-, 8-, 16-, and 32-scenario in-
stances. Moreover, DSP terminated after the first iteration for the 4-, 8- and
16-scenario instances because of the addition of valid inequalities to the sub-
problems. Most notably, these results are not possible without Procedure 1,
which is evident in Figure 8. We observe that the solution time per iteration
increases as the number of scenarios increases. The reason is that the method
generates more valid inequalities in Procedure 1 and evaluates more solutions
to update upper bounds, causing imbalanced computing load among scenar-
ios. In particular, each node needs to evaluate the recourse function for its
local first-stage variables and for all scenarios in order to determine the best
possible upper bound. This step is currently done sequentially and its time can
be reduced by considering additional computing nodes. The master problem
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solution time was less than 2 seconds per iteration and thus not a bottleneck
in parallel solution time.

We now illustrate the impact of Procedure 1. For the stochastic unit com-
mitment with 8 scenarios, we use DDSub, DSP without Procedure 1 (DSP-P1),
and DSP with Procedure 1 (DSP+P1). Figure 8 shows the best upper bound
and the best lower bound at each iteration. As can be seen, DSP+P1 obtained
upper and lower bounds with < 0.01% duality gap at the first iteration and
terminated, whereas DSP-P1 and DDSub were not able to find upper bounds
for the first 53 iterations and the first 47 iterations, respectively, because the
problem does not have relatively complete recourse. Moreover, DSP+P1 found
tighter lower bounds than did DDSub and DSP-P1, because of the ability to
tighten the subproblems by Procedure 1. The figure also shows that DSP-P1
still found better lower and upper bounds than did DDSub.
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Fig. 8: Upper bounds and lower bounds obtained with DSP with and without
Procedure 1 and with the subgradient method.

We conclude this section by reporting the computational results from solv-
ing the extensive form of the stochastic unit commitment problems. Th results
are summarized in Table 5. The extensive form of each instance is solved by
SCIP on a single node with a single core. For all the instances (except the
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4-scenario instance) with 6-hour time limit, upper and lower bounds obtained
from the extensive forms were not better than those obtained with DSP.

Table 5: Numerical results for the extensive form of the stochastic unit com-
mitment problems

Number of Wall time
Scenarios B&C nodes Upper Bound Lower Bound Gap (%) (sec.)

4 88831 907035.3 906089.9 0.01 6632
8 58235 904068.1 903567.8 0.05 > 21600

16 3505 900806.1 900200.3 0.07 > 21600
32 9 907536.0 901759.8 0.64 > 21600
64 1 ∞ 33605.4 ∞ > 21600

6 Summary

We have provided algorithmic innovations for the dual decomposition method.
Our first innovation is a procedure to generate valid inequalities that guarantee
recovery of upper bounds in the absence of relatively complete recourse and
that tighten subproblem solutions. Our second innovation is an interior-point
cutting-plane method with early termination criteria to solve the Lagrangian
master problem. We have proved that the dual decomposition method incor-
porating our innovations converge in a finite number of iterations. We have
introduced DSP, a software package that provides implementations of the dual
decomposition method proposed as well as other standard methods such as
Benders decomposition and a subgradient-based dual decomposition method.
DSP also allows users to specify large-scale models in C, StochJuMP, and SMPS
formats. The object-oriented design of the implementation allows users to cus-
tomize decomposition techniques. We use DSP to benchmark different methods
on standard problem instances and stochastic unit commitment problems. The
numerical results showed significant improvements in terms of the quality of
upper bounds, number of iterations, and time for all instances.

As part of future work, we will seek to scale our method to solve problems
with a larger number of scenarios. In particular, we have observed load imbal-
ances in the subproblem solution times, because each Lagrangian subproblem
is a large mixed-integer program. These can be alleviated by asynchronous
parallel implementation. Moreover, solving the master problem can be a bot-
tleneck as cuts are accumulated. A warm-start technique for the primal-dual
interior-point method [18] and a parallelization of the master problem as pro-
posed in [33] can ameliorate this effect. We will address these issues in future
work.
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A Notations: Two-Stage Stochastic Unit Commitment

We present notations for the two-stage stochastic unit commitment considered in Section 5.2.

Table 6: Notations for the stochastic unit commitment model

Sets:
G Set of all generators
Gs Set of slow generators
Gf Set of fast generators
K Set of linear segments of the piece-wise linear power generation cost
L Set of transmission lines
N Set of buses
S Set of scenarios
T Set of time periods
W Set of wind power generators
Parameters:
Cup
g Start-up cost of generator g

Cdn
g Shut-down cost of generator g

Cfx
g Fixed cost of operating the generator g

Cmar
gk kth marginal cost of production of generator g

Xinit
g Initial on/off status of generator g

UT init
g Initial minimum uptime of generator g

UTg Minimum uptime of generator g
DT init

g Initial minimum downtime of generator g
DTg Minimum downtime of generator g
RUg Ramp-up limit of generator g
RDg Ramp-down limit of generator g
RCg Ramping capacity of generator g
P init
g Initial power output of generator g

Pmin
g Minimum power output of generator g
Pmax
g Maximum power output of generator g
Qmax
gk Maximum power output of generator g with the kth marginal cost

SRt Spinning reserve required at time t
Fmax
l Maximum power flow of transmission line l
LSFln Load-shift factor of transmission line l with respect to bus n
πs Probability of scenario s
Djnt Demand load at bus n at time t in scenario j
Wjwt Wind power generation from generator w at time t in scenario j
Decision variables:
xjgt On/off indicator of generator g at time t in scenario j
ujgt Start-up indicator of generator g at time t in scenario j
vjgt Shut-down indicator of generator g at time t in scenario j
pjgt Power output of generator g at time t in scenario j
qjgkt Power output of generator g at time t with the kth marginal cost in scenario j

B Formulation: Two-Stage Stochastic Unit Commitment

We present a two-stage stochastic unit commitment model formulation, where the commit-
ment decisions for slow generators are made in the first stage and the commitment decisions
for fast generators and the power dispatch decision are made in the second stage. In the
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model, we consider ramping constraints, reserve constraints and transmission line capacity
constraints. We assume that the power generation cost is piecewise linear convex.

min
∑
j∈S

∑
t∈T

∑
g∈G

πj

Cfx
g xjgt + Cup

g ujgt + Cdn
g vjgt +

∑
k∈K

Cmar
gk qjgkt

 (22a)

s.t. 1− xjg(t−1) ≥ ujgt, ∀j ∈ S, g ∈ G, t ∈ T , (22b)

xjg(t−1) ≥ vjgt, ∀j ∈ S, g ∈ G, t ∈ T , (22c)

xjgt − xjg(t−1) = ujgt − vjgt, ∀j ∈ S, g ∈ G, t ∈ T , (22d)

xjgt ≥
t∑

τ=max{1,t−UTg+1}
ujgτ , ∀j ∈ S, g ∈ G, t ∈ T , (22e)

1− xjgt ≥
t∑

τ=max{1,t−DTg+1}
ujgτ ,

∀j ∈ S, g ∈ G, t ∈ T , (22f)

−RDg ≤ pjgt − pjg(t−1) ≤ RUg − sjgt,

∀j ∈ S, g ∈ G, t ∈ T , (22g)

sjgt ≤ RCgxjgt, ∀j ∈ S, g ∈ G, t ∈ T , (22h)∑
g∈G

sjgt ≥ SRt, ∀j ∈ S, t ∈ T , (22i)

pjgt = Pmin
g xjgt +

∑
k∈K

qjgkt, ∀j ∈ S, g ∈ G, t ∈ T , (22j)

pjgt + sjgt ≤ Pmax
g xjgt, ∀j ∈ S, g ∈ G, t ∈ T , (22k)

qjgkt ≤ Qmax
gk xjgt, ∀j ∈ S, g ∈ G, k ∈ K, t ∈ T , (22l)∑

g∈G
pjgt =

∑
n∈N

Djnt −
∑
w∈W

Wjwt, ∀j ∈ S, t ∈ T , (22m)

− Fmax
l ≤

∑
g∈G

LSFlgpjgt −
∑
n∈N

LSFlnDjnt

+
∑
w∈W

LSFlwWjwt ≤ Fmax
l , ∀j ∈ S, l ∈ L, t ∈ T , (22n)

xigt = xjgt, uigt = ujgt, vigt = vjgt,

∀i, j ∈ S, g ∈ Gs, t ∈ T (22o)

xjg0 = Xinit
g , ∀j ∈ S, g ∈ G, (22p)

xjgt = 1, ∀j ∈ S, g ∈ G, t ∈ {1, . . . , UT init
g }, (22q)

xjgt = 0, ∀j ∈ S, g ∈ G, t ∈ {1, . . . , DT init
g }, (22r)

pjg0 = P init
g , ∀j ∈ S, g ∈ G, (22s)

xjgt ∈ {0, 1}, 0 ≤ ujgt, vjgt ≤ 1, ∀j ∈ S, g ∈ G, t ∈ T (22t)

pjgt, qjgkt, sjgt ≥ 0, ∀j ∈ S, g ∈ G, t ∈ T (22u)

The objective (22a) is to minimize the expected value of the sum of operating, start-
up, shut-down, and production cost. Equations (22b)-(22d) ensure the logical relation of
the commitment, start-up and shut-down decisions. Equations (22e) and (22f) respectively
represent the minimum downtime and uptime of generators in each time period. Equations
(22g) and (22h) are ramping constraints and equation (22i) is a spinning reserve constraint.
Equations (22j) and (22k) are the constraints for minimum power generation and maximum
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power generation, respectively. Equation (22l) represents the piecewise linearized power gen-
eration cost. Equations (22m) and (22n) are the flow balance constraint and the transmission
line flow constraint, respectively. Equation (22o) ensures that the decisions for slow genera-
tors does not change for scenarios. This is also called nonanticipativity constraint. Equations
(22p)-(22s) represent the initial conditions of generators and production level.
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